Skip to content

Compute Optimization

Cluster Sizing, Spot Instances, and Auto-Scaling


Overview

Compute optimization reduces compute costs through rightsizing, spot instances, dynamic allocation, and choosing between serverless and provisioned models.


Optimization Strategies

Strategy Overview


Optimization Impact

Cost Savings

OptimizationSavingsComplexityUse Case
Spot instances60-80%MediumFault-tolerant workloads
Rightsizing20-40%MediumAll clusters
Dynamic allocation30-50%LowVariable workloads
ServerlessVariableLowInfrequent usage

Combined Impact: 70-90% compute savings possible.


Compute Optimization Guides

DocumentDescriptionStatus
Spark Dynamic AllocationAuto-scaling Spark✅ Complete
Spot Preemptible InstancesSpot instances✅ Complete
Cluster RightsizingData-driven sizing✅ Complete
Serverless vs. ProvisionedCompute model choice✅ Complete

Quick Wins

Immediate Actions

  1. Enable spot instances: 60-80% cost savings
  2. Enable dynamic allocation: Auto-scale executors
  3. Right-size clusters: Based on actual usage
  4. Choose serverless: For infrequent workloads
  5. Monitor utilization: Track CPU, memory, storage

Long-Term Strategy

  1. Implement auto-scaling: Dynamic allocation
  2. Use spot instances: For fault-tolerant workloads
  3. Regular rightsizing: Quarterly cluster review
  4. Hybrid approach: Mix serverless and provisioned
  5. Automation: Automated scaling and rightsizing

Key Takeaways

  1. Spot instances: 60-80% savings for fault-tolerant workloads
  2. Rightsizing: Data-driven cluster sizing
  3. Dynamic allocation: Auto-scaling for variable workloads
  4. Serverless: Zero idle cost for infrequent usage
  5. Provisioned: Predictable cost for constant usage
  6. Monitoring: Track utilization, costs, performance
  7. Automation: Automate scaling and rightsizing
  8. Use When: All compute, cost optimization focus

Back to Module 7