Skip to content

Module 7: Performance & Cost Optimization


Overview

This module is CRITICAL for Principal-level engineers. Every architectural decision has cost implications. This module covers storage optimization (small files problem, compaction, compression, Z-Ordering), compute optimization (spot instances, rightsizing, serverless), query performance (caching, materialized views, join strategies), and FinOps (tagging, chargeback, lifecycle management).


Module Contents

Storage Optimization

DocumentDescriptionStatus
Storage Optimization OverviewStorage strategies✅ Complete
Small Files ProblemImpact and solutions✅ Complete
Compaction StrategiesFile merging strategies✅ Complete
Compression CodecsCodec comparison✅ Complete
Data SkippingPredicate pushdown✅ Complete
Partition PruningPartition optimization✅ Complete
Z-Ordering ClusteringMulti-dimensional clustering✅ Complete

Compute Optimization

DocumentDescriptionStatus
Compute Optimization OverviewCompute strategies✅ Complete
Spark Dynamic AllocationAuto-scaling Spark✅ Complete
Spot Preemptible InstancesSpot instances✅ Complete
Cluster RightsizingData-driven sizing✅ Complete
Serverless vs. ProvisionedCompute model choice✅ Complete

Query Performance

DocumentDescriptionStatus
Query Performance OverviewQuery strategies✅ Complete
Caching StrategiesResult caching✅ Complete
Join StrategiesJoin optimization✅ Complete
Materialized ViewsPre-computed results✅ Complete
VectorizationCPU optimization✅ Complete

FinOps

DocumentDescriptionStatus
FinOps OverviewFinancial operations✅ Complete
Tagging StrategiesCost attribution✅ Complete
Chargeback ModelsCost allocation✅ Complete
Lifecycle ManagementData lifecycle✅ Complete
Cost MonitoringCost observability✅ Complete

The Cost Optimization Framework


Cost Optimization Impact

OptimizationTypical SavingsComplexityPriority
Spot instances60-80%LowHIGH
Compression (ZSTD)15-30% storageLowHIGH
File size optimization10-50% queryMediumHIGH
Z-Ordering50-80% queryMediumHIGH
Materialized views70-90% queryMediumMEDIUM
Right-sizing20-40% computeMediumHIGH
Lifecycle management30-70% storageMediumMEDIUM

The Small Files Problem

Problem: Thousands of small files → slow queries, metadata explosion.

Impact:

  • Query planning overhead
  • Inefficient I/O (many small reads)
  • NameNode/metastore pressure

Solutions:

  1. Proper file sizing (256MB-1GB)
  2. Continuous compaction
  3. Partition optimization
  4. Streaming configuration

Cost Impact: Unchecked small files can increase query costs by 10-100x.


FinOps Maturity Model


Learning Objectives

After completing this module, you will:

  1. Solve the small files problem: Compaction strategies and automation
  2. Optimize compression: Select codecs for cost/performance balance
  3. Implement Z-Ordering: Multi-dimensional data skipping
  4. Use spot instances: 60-80% compute savings with fault tolerance
  5. Right-size clusters: Data-driven cluster sizing
  6. Choose serverless vs. provisioned: Cost model analysis
  7. Implement materialized views: Query cost reduction
  8. Design FinOps practices: Tagging, chargeback, monitoring

Module Dependencies

This module is critical for Principal-level interviews. Cost optimization is a primary architectural concern.


Next Steps

  1. Start with Small Files Problem
  2. Study Compaction Strategies
  3. Learn Spot Instances
  4. Implement FinOps

Estimated Time to Complete Module 7: 12-15 hours (CRITICAL MODULE)

Total Files: 22 markdown files with 80+ diagrams